Accessing the sea quark polarization via Wmeasurements at PHENIX

Xiaorong Wang for PHENIX collaboration

Proton Spin 1/2: Crisis behind one half

The challenge of "Too Small"

$$\Delta \Sigma = \Delta u + \Delta d + \Delta \overline{u} + \Delta \overline{d} + \dots$$

Poorly constrained

RHIC Spin Program

- ☐ Longitudinal spin program
- -- Gluon polarization distribution

$$\Delta G = \int_0^1 dx \cdot \Delta g(x)$$

-- Anti-quark sea polarization

$$A_L(u + \overline{d} \rightarrow W^+ \rightarrow l^+ + \nu_l)$$

$$A_L(\overline{u} + d \rightarrow W^- \rightarrow l^- + \overline{\nu}_l)$$

☐ Transverse spin program

sensitivity to <Lz> + transversity

Polarized Parton Distribution Function

20 years of DIS/SIDIS measurements

Sensitive to quark antiquark sum

- Recent pp collisions at RHIC Constrain on gluon polarization
- Our measurement allow us to access sea quark contribution $\Delta \overline{u}$ and $\Delta \overline{d}$

RHIC as a Polarized p + p Collider

Measurement of W at PHENIX

18.5 m = 60 ft

Central Arms

|η|<0.35

Trigger: EMCal + RICH ("ERT")

Detectors: DC, PC, EMCal

Muon Arms

1.2 < | η | < 2.4

Trigger: Small sagitta + MuID

+ timing (RPC/BBC)

Detectors: MuTr, MuID, RPC,

BBC FVTX

Flavor-Separated Sea Quark at PHENIX

$$u + \overline{d} \rightarrow W^+; \overline{u} + d \rightarrow W^-$$

W asymmetry A_L

$$A_L = \frac{\sigma_{-} - \sigma_{+}}{\sigma_{-} + \sigma_{+}}$$

W[±]→e[±] Cross Section in Central Arm

W cross sections for e decay cannel from both PHENIX and STAR described well along with Tevatron and LHC data.

$W^{\pm} \rightarrow e^{\pm} A_L$ at Central Arm

PHENIX Forward Upgrade Program

Single Muon Spectrum at Forward Rapidity

Data and simulated muon cross section

W→µ signal
Irreducible background
Fake background

Signal to background ~1:3 $(p_T > 15 \text{ GeV/}c)$

First $W^{\pm} \rightarrow \mu^{\pm} A_{L}$ at Forward Rapidity

$$L = 300 \text{ pb}^{-1}, P = 55\%, S/B = 3.0$$

Expect FVTX to make contribution on background reduction!

Xiaorong Wang, LLWI, February 2013

FVTX Commissioning and Current Status

FVTX covers 1.2 < $|\eta|$ < 2.4, 2π in φ ; 1.1 Million strips (each 75 μ m radial, 3.75 in φ);

Expected to improve analysis power by

- Precise vertex determination
- Better Tracking

Summary of FVTX Status in 2012

- Over 90% of Detector is operational
- > FVTX collected 30pb⁻¹ data in pp 500GeV

FVTX-VTX tracking, by A. Key

FVTX

MuTr Matching

W[±]→µ [±] Background Study

• Dominated background is from misreconstructed low p_T hadrons

 K^{\pm}/π^{\pm}

Background reduction with FVTX (simulation)

Summary and Outlook

- W asymmetry offers a cleaner and more direct probe of sea quark spin.
- PHENIX has measured Ws at mid and forward rapidities through W-> $e(\mu)$ decay.
- Run12 p+p 510 GeV run ended successfully. Taking data with VTX, FVTX, and RPC. Analysis is under the way.
- In Run13, an integrated luminosity of 250 pb⁻¹ within 30cm vertex range is anticipated with full upgraded hardware set ready.

